208 research outputs found

    Exercise intolerance in chronic heart failure : mechanisms and therapies. Part I

    Get PDF
    Muscular fatigue and dyspnoea on exertion are among the most common symptoms in chronic heart failure; however their origin is still poorly understood. Several studies have shown that cardiac dysfunction alone cannot fully explain their origin, but the contribution of the multiorgan failure present in this syndrome must be highlighted. In this study, divided in two parts (see part II: pp. 643-648), we aimed to summarize the existing evidence and the most controversial aspects of the complex interplay of different factors involved in symptom generation. In this first part of the review, six key factors are revised: the heart, the lung, the skeletal muscle, the hormonal changes, the O-2 delivery to the periphery, the endothelium. In the second part, the role of the excitatory reflexes and the cardiac cachexia will be presented, and finally, the potential therapeutic implications are discussed. We believe that a better knowledge of the pathophysiology of this syndrome may contribute to the management of the patients and to the improvement in their stress tolerance and quality of life. Eur J Cardiovasc Prev Rehabil 17:637-642 (C) 2010 The European Society of Cardiolog

    TNF-α is involved in activating DNA fragmentation in skeletal muscle

    Get PDF
    Intraperitoneal administration of 100 μg kg−1 (body weight) of tumour necrosis factor-α to rats for 8 consecutive days resulted in a significant decrease in protein content, which was concomitant with a reduction in DNA content. Interestingly, the protein/DNA ratio was unchanged in the skeletal muscle of the tumour necrosis factor-α-treated animals as compared with the non-treated controls. Analysis of muscle DNA fragmentation clearly showed enhanced laddering in the skeletal muscle of tumour necrosis factor-α-treated animals, suggesting an apoptotic phenomenon. In a different set of experiments, mice bearing a cachexia-inducing tumour (the Lewis lung carcinoma) showed an increase in muscle DNA fragmentation (9.8-fold) as compared with their non-tumour-bearing control counterparts as previously described. When gene-deficient mice for tumour necrosis factor-α receptor protein I were inoculated with Lewis lung carcinoma, they were also affected by DNA fragmentation; however the increase was only 2.1-fold. These results suggest that tumour necrosis factor-α partly mediates DNA fragmentation during experimental cancer-associated cachexia

    T Regulatory Cells Are Markers of Disease Activity in Multiple Sclerosis Patients

    Get PDF
    FoxP3+ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS), an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis

    Contribution of brain or biological reserve and cognitive or neural reserve to outcome after TBI: a meta-analysis (prior to 2015)

    Get PDF
    Brain/biological (BR) and cognitive/neural reserve (CR) have increasingly been used to explain some of the variability that occurs as a consequence of normal ageing and neurological injuries or disease. However, research evaluating the impact of reserve on outcomes after adult traumatic brain injury (TBI) has yet to be quantitatively reviewed. This meta-analysis consolidated data from 90 studies (published prior to 2015) that either examined the relationship between measures of BR (genetics, age, sex) or CR (education, premorbid IQ) and outcomes after TBI or compared the outcomes of groups with high and low reserve. The evidence for genetic sources of reserve was limited and often contrary to prediction. APOE ∈4 status has been studied most, but did not have a consistent or sizeable impact on outcomes. The majority of studies found that younger age was associated with better outcomes, however most failed to adjust for normal age-related changes in cognitive performance that are independent of a TBI. This finding was reversed (older adults had better outcomes) in the small number of studies that provided age-adjusted scores; although it remains unclear whether differences in the cause and severity of injuries that are sustained by younger and older adults contributed to this finding. Despite being more likely to sustain a TBI, males have comparable outcomes to females. Overall, as is the case in the general population, higher levels of education and pre-morbid IQ are both associated with better outcomes.Jane L. Mathias, Patricia Wheato
    • …
    corecore